Opposing roles of FoxP1 and Nfat3 in transcriptional control of cardiomyocyte hypertrophy.

نویسندگان

  • Shoumei Bai
  • Tom K Kerppola
چکیده

Cardiac homeostasis is maintained by a balance of growth-promoting and growth-modulating factors. Sustained elevation of calcium signaling can induce cardiac hypertrophy through activation of Nfat family transcription factors. FoxP family transcription factors are known to interact with Nfat proteins and to modulate their transcriptional activities in lymphocytes. We investigated FoxP1 interaction with Nfat3 (Nfatc4) and their effects on transcription of hypertrophy-associated genes in neonatal rat cardiomyocytes. FoxP1-Nfat3 complexes were visualized using bimolecular fluorescence complementation (BiFC) analysis. Calcineurin activation induced FoxP1-Nfat3 BiFC complex formation. Amino acid substitutions in the predicted interaction interface inhibited it. FoxP1 repressed hypertrophy-associated genes (Myh7, Rcan1, Cx43, Anf, and Bnp) and counteracted their activation by constitutively nuclear Nfat3 (cnNfat3). In contrast, FoxP1 activated genes that maintain normal heart functions (Myh6 and p57Kip2) and cnNfat3 counteracted their activation by FoxP1. Amino acid substitutions in FoxP1 or cnNfat3 that inhibited their interaction abrogated the activation of hypertrophy-associated gene transcription by cnNfat3 and the repression of these genes by FoxP1. FoxP1 and Nfat3 co-occupied the promoter regions of hypertrophy-associated genes in neonatal and adult heart tissue. FoxP1 counteracted hypertrophic cardiomyocyte growth, and connexin 43 mislocalization caused by cnNfat3 expression. These data suggest that the opposing transcriptional activities of FoxP1 and Nfat3 maintain cardiomyocyte homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Foxp1/2/4 regulate endochondral ossification as a suppresser complex.

Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription ...

متن کامل

Lercanidipine attenuates angiotensin II-induced cardiomyocyte hypertrophy by blocking calcineurin-NFAT3 and CaMKII-HDAC4 signaling

Previous studies have demonstrated that lercanidipine, a calcium channel blocker, may protect against cardiac hypertrophy; however, the underlying mechanisms remain unclear. In the present study, the effects of lercanidipine on hypertrophy and the mechanisms involved were investigated. Cardiomyocytes isolated from neonatal rats were cultured and treated with angiotensin II (Ang II) in the prese...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 31 14  شماره 

صفحات  -

تاریخ انتشار 2011